SONY

Edge computing is gaining attention as the use of IoT technology spreads.

The XCG-CP510/CL polarization camera and SDK for polarization cameras works with NVIDIA Jetson systems, which are widely used in AI systems incorporating edge computing.

Features

Capture a polarized image with one shot Each individual pixel has one of four different linear polarization filters which enables four different polarization images to be captured simultaneously. Each calculation unit composed of four-pixel block supports calculation of "Polarization directions" and "Degree of Polarization (DoP)" based on luminance value on each pixel.

Feature-rich

The polarization camera SDK enables the following

- polarization image processing.
- Degree of Polarization (DoP)
 Surface Normal
- Reflection Removal
- Reflection Enhancement.

Work efficiency

- The polarization camera SDK enables easy polarization application development.
- Sony provides a viewer application, library, and sample source code.

Digital video camera Equipped with the Global Shutter Polarization CMOS Sensor

Gige Vision[®] XCG-CP Series

Polarization Camera SDK for NVIDIA Jetson

XCG-CP510/CL (B/W)

- 2/3-type Polarization Image CMOS Sensor with Global Shutter Function (Pregius)
- 5.1MP 23 fps

XPL-SDKLJ

• SDK for Polarization Camera (for NVIDIA Jetson)

*XCG-CP510/CL includes license of XPL-SDKLJ

The following are made possible through the use of edge computing to analyze and process data: (1) More instantaneous processing (2) System downsizing (3) Reduction of data transmission cost.

Canceling car windshield reflection by processing polarization, allows for the inside of cars to be captured clearly, something that proved to be a difficult up until this point in the ITS market. This clarity makes it easy to identify illegal smartphone use while driving or to verify whether drivers or passengers are wearing a seatbelt.

Features

What is polarization?

Light is a vibrating electromagnetic wave that has four components: amplitude, wavelength, vibration direction, and radio wave direction. Of these components, Sony polarization technology focuses on vibration direction.

Unpolarized light Normally, natural light, fluorescent light, and other kinds of light vibrate in random directions.

Such light is called "natural light" or "unpolarized light" (Figure A).

Light vibrates in specific directions when it is reflected off the surface of an object. Such light is called "polarized light." Light (natural light/unpolarized light) Reflected light (polarized light) Figure A

Passing light through a polarization plate can remove or extract light in specific vibration directions. Passing natural light (unpolarized light) through a polarizer can extract light polarized in specific directions (Figure B).

Figure B

Using the polarization phenomenon above, the shape of a subject can be estimated by analyzing luminance information from multiple images that have passed through polarization plates at different angles.

Example of an app. incorporating the polarization camera SDK (NVIDIA Jetson version) [ITS Solution Proposal]

*The image recognition AI needs to be developed by the client

Reflection (Cancel)

Reflected components calculated from four direction polarized images are removed.

Images reflected off transparent objects such as glass are reduced, making objects on the other side more visible. Reflections can be removed by both automatic calculation and manual angle adjustment.

Eliminates windshield glare to clearly determine the number of individuals in a vehicle

Why Polarization SDK for NVIDIA Jetson?

NVIDIA Jetson is widely utilized from Edge Computing point of view because it gives us following benefits.

Real Time Operation

"Recognition processing by using GPU"at edge realizes Real Time Operation.

*lmage

Downsizing

It enables downsizing of the system at the edge.

Low Cost

By processing imaging data at edge, data transmission cost will be extremely low.

Seatbelt detection

Eliminates windshield glare to detect whether individuals in a vehicle are wearing their seatbelts

Applications of Polarization Cameras and SDK <Processing examples>

Degree of Polarization (DoP)

The degree of polarization (DoP) is calculated for each pixel and displayed as a degree of polarization image.

This feature makes it easier to see low-contrast objects or objects that are difficult to recognize when they are the same colour as the background.

[Input Image]

[DoP]

Surface Normal

The plane direction is estimated from the polarized state of each pixel and displayed as a surface normal image.

The object plane direction is displayed with different colours by using a colour map.

[Input Image]

[Surface Normal]

Reflection (Cancel)

Reflected components calculated from four direction polarized images are removed.

Images reflected off transparent objects such as glass are reduced, making objects on the other side more visible.

Reflections can be removed by both automatic calculation and manual angle adjustment.

[Input Image]

[Reflection (Cancel)]

Reflection (Enhance)

Reflected components calculated from four direction polarized images are enhanced.

Images reflected off transparent objects such as glass are enhanced when displayed.

A transparent object can also be made more visible.

[Input Image]

[Reflection (Enhance)]

Demosaic

Our unique demosaic function is optimally designed for the polarizer array.

The demosaic process reconstructs full resolution level image from the original pixels output of 4 directional polarizer array.

With our SDK, polarization processing happens after demosaicing to create an image with a higher resolution.

* Expected results may not be obtained depending on measurement environments or conditions.

[Raw Image]

[After Demosaic]

Performance Specifications of Jetson

Jetson AGX Xavier (16GB)

Demosaic Type	Power mode					
	MAXN	MODE_30W_*	MODE_15W	MODE_10W		
Full	23.4 fps	23.4 fps	23.4 fps	not support		
Quarter	23.4 fps	23.4 fps	23.4 fps	not support		

Jetson TX2 (8GB)				

Demosaic Type	Power mode						
	MAXN	Max-Q	Max-P CORE ALL	Max-P CORE ARM	Max-P Denver		
Full	23.4 fps	20.6 fps	23.4 fps	23.4 fps	not support		
Quarter	23.4 fps	23.4 fps	23.4 fps	23.4 fps	not support		

*Camera : drive mode : 0, pixel format : 8bit (max. 23.4 fps)

*Measures the frame rate after polarization processing with "Reflection (Cancel)"

XCG-CP510/CL Specifications (Polarization Camera) includes license of XPL-SDKLJ

Basic Specifi	cations	XCG-CP510/CL				
B/W / Colour	cations	B/W				
Image Size		5.1 MP				
Image Sensor		IMX250 (Polarization image sensor) 2/3-type CMOS Image sensors with a global shutter function (Pregius)				
Number of Effective Pixels (H x V)		2,464 ×2,056				
Cell Size (H x V)		3.45 μm×3.45 μm				
Standard Ou (HxV)	utput Pixels	2,448 ×2,048				
Frame Rate		23 fps (8 bit, Mono/Raw)				
Minimum Illum	ination	1.5 lx (iris: F1.4, Gain: +18 dB, Shutter: 1/23 s)				
Sensitivity		F4 (400 lx, Gain:0 dB , Shutter: 1/23 s)				
SNR		More than 50 dB (Lens close, Gain: 0 dB, 8 bit)				
Gain		Auto,Manual : 0 dB to 18 dB				
Shutter Speed		Auto, Manual : 60 to 1/100,000 s				
Camera feat						
Readout Modes	S	Normal, Partial scan				
Readout Featur		Test pattern				
Synchronization	n	Hardware trigger, Software trigger, PTP(IEEE1588)				
Trigger Modes		OFF (Free run), ON (Edge detection, Trigger width detection), Special trigger (Burst trigger, Bulk trigger, Sequential trigger, Free set sequence)				
Userset		16				
User Memory		64 kbytes + 64 bytes × 16 ch				
Partial Scan	Partial Scan W (Pixel) H (Line)	16 to 2,464				
	H (Line)	16 to 2,056				
GPO		EXPOSURE/Strobe/Sensor lead out/Trigger through/Pulse generation signal/User defined 1, 2, 3 (selectable)				
Other Features		Area gain, Defect correction, Shading correction, Temperature readout				
Interface						
Video Data Out	put	digital Mono8, 10, 12 bit (default setting 8 bit)				
Digital Interface	2	Gigabit Ethernet (1000BASE-T/100BASE-TX)				
Camera Specific	cation	GigE Vision® Version 2.0/1.2				
Digital I/O		ISO IN (x1), TTL IN/OUT (x2, selectable)				
General						
Lens Mount		C mount				
Flange Back		17.526 mm				
Power Requirer	nents	DC +12 V (10.5 V to 15.0 V), IEEE802.3af (37 V to 57 V)				
Power Consum	ption	DC+12 V 3.3 W (max.)				
Operating Terr	porature	IEEE802.3af 3.7 W (max.) -5 °C to +45 °C (23 °F to 113 °F)				
Operating Temp Performance Temperature		0 °C to 40 °C (32 °F to 104 °F)				
	rature	-30 °C to +60 °C (-22 °F to +140 °F)				
Storage Temperature Operating Humidity		20% to 80% (no condensation)				
Storage Humidity		20% to 80% (no condensation)				
Vibration Resistance		10 G (20 Hz to 200 Hz 20 minutes for each direction -x, y, z)				
Shock Resistance		70 G				
Dimensions (W	x H x D)	29 × 29 × 42 mm (1 3/ ₁₆ × 1 3/ ₁₆ × 1 11/ ₁₆ inches) (excluding protrusions)				
Mass		Approx. 65 g (2 oz)				
MTBF		62,042 hours (Approx. 7.1 years)				
Regulations		UL60950-1, FCC Class A, CSA C22.2-No.60950-1, IC Class A Digital Device, CE : EN61326 (Class A), AS EMC: EN61326-1, VCCI Class A, KCC,CISPR22/24+IEC61000-3-2/-3				
Supplied Acces	sories	Lens mount cap (1), Safety Regulations (1)				

XPL-SDKLJ Specifications (SDK for Polarization Camera (for NVIDIA Jetson))

	XPL-SDKLJ
Supported languages	(++
Development environment	NVIDIA Jetpack 4.3 • GCC 7.4.0 • CUDA 10 • OpenCV 4.1
Feature	Degree of Polarization Surface Normal Reflection Control Demosaic Virtual Polarizer FFC (Flat Field Correction)
Components	XPL-SDK XCG-SDK Sample viewer Sample source code API document
Device	NVIDIA Jetson TX2 series NVIDIA Jetson AGX Xavier

Camera Functions

IEEE1588 compliant Area Gain Defect Correction Shading Correction Image Flip Temperature Readout Bulk Trigger Burst Trigger Sequential Trigger Trigger Range

For details of each function, refer to the technical manual.

			by	

©2019, 2020 Sony Imaging Products & Solutions Inc.

Reproduction in whole or in part without written permission is prohibited. Features and specifications are subject to change without notice. The values for mass and dimensions are approximate. "SONY" is a registered trademark of Sony Corporation. Polarsens, Pregius and Exmor are trademarks of Sony Corporation. NVIDIA, CUDA, Jetson, Jetson TX2, Jetson AGX Xavier and NVIDIA JetPack are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. All other trademarks are the property of their respective owners. Please visit Sony's professional website or contact your Sony representative for specific models available in your region.

PHC_25/05/2020

